Streaming Algorithms:

Data without a disk

H. Andrew Schwartz

CSE545
Spring 2020

Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

L BN

Data Framewsrke A/gom‘témc and Aha/yg'ey

g/mf/a.k;t Y §’ earch

Hac{aop F_/./e .S‘_yf'feh‘l g:baré HyPOfﬁlef;g 7—€§'tl.h9

Streaming Graph Analycis

MapRedvce

7 y Recommendation gggtemc
ensorflow
Dee,b learm‘ng

What is Streaming?

Broadly:

4)

Process
RECORD IN RECORD GONE

Why Streaming?

(1) Direct: Often, data ...

e ... cannot be stored (too big, privacy concerns)
e ... are not practical to access repeatedly (reading is too long)
e ... are rapidly arriving (need rapidly updated "results")

Why Streaming?

(1) Direct: Often, data ...

e ... cannot be stored (too big, privacy concerns)
e ... are not practical to access repeatedly (reading is too long)
e ... are rapidly arriving (need rapidly updated "results")

Examples: Google search queries
Satellite imagery data
Text Mescages, Status vpdates
Click Streame

Why Streaming?

(1) Direct: Often, data ...

e ... cannot be stored (too big, privacy concerns)
e ... are not practical to access repeatedly (reading is too long)
e ... are rapidly arriving (need rapidly updated "results")

(2) Indirect: The constraints for streaming data force one to
solutions that are often efficient even when storing data.
Streaming Approx Random Sample

Dictribuvted TO [/Ma,leeduce, g,baré}

Why Streaming?

Often translates into O(N) or strictly N algorithms.

4)
Process
RECORD IN RECORD GONE

" V.
(2) Indirect: The constraints for streaming data force one to

solutions that are often efficient even when storing data.

Streaming Approx Random Sample

Dictribuvted TO [/Wa,b/Qeduce, g,baré}

Streaming Topics

General Stream Processing Model
Sampling
Counting Distinct Elements

Filtering data according to a criteria

e

RECORD IN>

Process

for
stream queries

D\

RECORD GONI>

T~

-

Standing Queries:
Stored and permanently executing.

-

A /Ad-Hoc:
One-time questions
-- must store expected parts /
summaries of streams
N

e

'RECORD IN>

Process

for
stream queries

D\

'RECORD GONI>

A

-

Standing Queries:
Stored and permanently executing.

_

A /Ad-Hoc:
One-time questions
-- must store expected parts /
summaries of streams
o

E.g. How would you handle:
What is the mean of values seen so far?

4)

Process
RECORD IN for RECORD GONE

stream queries

Important difference from typical database management:
e Input is not controlled by system staff.

e Input timing/rate is often unknown, controlled by users.

4)

Process
RECORD IN for RECORD GONE

stream queries

’A‘

Important differ
Might hold a sliding window of

_ records instead of single record.
e Inputis

.,i,hg,f e d cb,a

e Input timing/rate olled by users.

General Stream Processing Model

(Leskovec et al., 2014)

,4,3,11,2,0,5,8,1,4
Input stream

A ctream of recorde

~

&

Processor

2N

J

:> Output

(Generalization,
Summarization)

(also often referred to ac ‘elements”, ‘tuplec” "linec” or "rows”)

[heoretically, could be anyth:‘ug./ cearch queriec, numbers, bits, image file, ...

General Stream Processing Model

ad-hoc|queries -- one-time questions

4)
Processor

,4,3,11,2,0, 5,8, 1,4 > Output

INput stream (Generalization,
_ - Summarization)

General Stream Processing Model

,4,3,11,2,0, 5,8, 1,4

Input stream

ad-hoc|queries

~

Processor

standing
queries

2N

J

> QOutput

(Generalization,
Summarization)

—- acked at all times.

General Stream Processing Model

,4,3,11,2,0, 5,8, 1,4

Input stream

ad-hoc|queries

~

Processor

standing
queries

2N

C

limited
memory

Q

> Qutput

(Generalization,
Summarization)

General Stream Processing Model

,4,3,11,2,0, 5,8, 1,4

Input stream

ad-hoc|queries

-

—

Processor

standing
queries

o\

J

C

limited
memory

C

> QOutput

(Generalization,
Summarization)

)T\

w

archival storage -1 .ot cuitable for

- fast queries.

Create a random sample for statistical analysis.

4)
RECORD IN> Process RECORD GONE>

Create a random sample for statistical analysis.

4)
RECORD IN> Process RECORD GONE>

limited
memory

Create a random sample for statistical analysis.

4)
RECORD IN> Process RECORD GONE>

sometime in
limited __future_ | run statistical
memory analysis

Sampling: 2 Versions

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

Sampling: 2 Versions

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)
/yt'x\ﬁ'

yu

Sampling: 2 Versions

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

record = stream.next()
if ?: #keep: e.g., true 5% of the time
memory.write(record)

RECORD IN RECORD GONE

XLt

limited
memory

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

record = stream.next()
if random() <= .05: #keep: true 5% of the time
memory.write(record)

RECORD IN RECORD GONE

random() < .05?

XLt

limited
memory

Create a random sample for statistical analysis.
1.

Simple Sampling: Individual records are what you wish to sample.

record = stream.next()

if random() <= .05: #keep: true 5% of the time
memory.write(record)

Problem: records/rows often are not units-of-analysis for statistical analyses

E.g. user_ids for searches, tweets; location_ids for satellite images

sometime in
limited __future_ | run statistical
memory analysis

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()
if random() <= .05: #keep: true 5% of the time
memory.write(record)

Solution: ?

Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()
if ??: #keep
memory.write(record)

Solution: ?

Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()
if ??: #keep:
memory.write(record)

Solution: instead of checking random digit; hash the attribute being sampled.

— streaming: only need to store hash functions; may be part of standing query

Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()
if hash(record[‘user_id’]) == 1: #keep
memory.write(record)

Solution: instead of checking random digit; hash the attribute being sampled.

— streaming: only need to store hash functions; may be part of standing query

How many buckets to hash into?

Streaming Topics

General Stream Processing Model
Sampling
Counting Distinct Elements

Filtering data according to a criteria

Counting Moments

Moments:

e Suppose m.is the count of distinct element i in the data
mf

e The kth moment of the stream is Z

1€Set

Counting Moments

Moments:

e Suppose m.is the count of distinct element i in the data
ok
e The kth moment of the stream is 2

1€Set

e (Oth moment: count of distinct elements
e 1st moment: length of stream
e 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Moments

Moments:

Trivial: just increment

a counter

e 1st moment: length of stream
e 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting MomengEiEsae

Counting...
distinct words in large document.
distinct websites (URLS).
users that visit a site without storing.

0th moment unique queries to Alexa.

e 0Oth moment: count of distinct elements
e 1st moment: length of stream
e 2nd moment: sum of squares

(measures uneveness; related to variance)

Applications

Cou nting Momen Counting...

distinct words in large document.
distinct websites (URLS).

users that visit a site without storing.
unique queries to Alexa.

O0th moment
One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can’t maintain that many in memory; disk storage is too slow

e 0Oth moment: count of distinct elements
e 1st moment: length of stream
e 2nd moment: sum of squares

(measures uneveness; related to variance)

Counting Moments

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:
n -- suspected total number of elements observed
pick a hash, h, to map each element to log,n bits (buckets)

(measures uneveness; related to variance)

Counting Moments

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:
n -- suspected total number of elements observed
pick a hash, h, to map each element to log,n bits (buckets)

R = @ #current max number of zeros at tail

for each stream element, e:
r(e) = trailZeros(h(e)) #num of trailing s from h(e)
R =nr(e) if r[e] > R

estimated distinct_elements = 2R

(measures uneveness; related to variance)

! Mathematical Intuition
Cou ntlng Mome' P(trailZeros(h(e)) >=i) = 2°
P(h(e) ==__0) =.5; P(h(e)==__00) =.25; ...
P(trailZeros(h(e)) <i) =1-2"
for m elements: = (1-27)"
0th moment P(one e has trailZeros >i)=1-(1-27)"
Streaming Solution: Flajolet-Martin =1 - M
General idea: If 28 >>m, then1-(1-27)"=0
SRV oo (o R el | Mol o=TlOIR If 2% << m, then 1-(1-27)"=1
pick a hash, h, to map each elemerit w

XOUCKELS)

R = @ #current max number of ze
for each stream element, e:
r(e) = trailZeros(h(e)) #nu
R =nr(e) if r[e] > R

y- trailing 0s from h(e)

estimated distinct _elements = 2% # m

(measures uneveness; related to variance)

Mathematical Intuition
P(trailZeros(h(e)) >=i) = 2°
#P(h(e) ==__0) =.5; P(h(e) ==__00) =.25; ...
P(trailZeros(h(e)) <i) =1-2"
for m elements: = (1-27)"
0th moment P(one e has trailZeros >i)=1-(1-27)"
Streaming Solution: Flajolet-Martin =1 -eMm?"
General idea: If 2R >>m, then1-(1-27)"=0
SRV oo (o R el | Mol o=TlOIR If 2% << m, then 1-(1-27)"=1
pick a hash, h, to map each elemerit w

Counting Momel

R = @ #current max number of ze Problem:

for each stream element, e: Unstable in practice.
r(e) = trailZeros(h(e)) #nu
R =r(e) if r[e] > R Solution:

Multiple hash functions
estimated distinct_elements = 2R but how to combine?

Problem:
0th moment Unstable in practice.
Streaming Solution: Flajolet-Martin Algorithm
General idea: Solution: Multiple hash functions
ARSSIVE oCle Rl IMVnICIMORSEINENINY 1. Partition into groups of size log n
pick a hash, h, to map each element to |8 3R EVCYNEE R Re o100k
3. Take median of group means
Rs = list()
for h in hashes:
R = @ #potential max number of zeros at tail
for each stream element, e:
r(e) = trailZeros(h(e)) #num of trailing s from h(e)
R =r(e) if r[e] > R
Rs.append(2®)

groupRs = [Rs[i:i+log n] for i in range(@, len(Rs), log n)]

estimated distinct elements = median(map(mean, groupRs))

Problem:
0th moment Unstable in practice.
Streaming Solution: Flajolet-Martin Algorithm
General idea: Solution: Multiple hash functions
ARSSIVE oCle Rl IMVnICIMORSEINENINY 1. Partition into groups of size log n
pick a hash, h, to map each element to |8 EVEYNEE R Re o101

b. Take median of group means
Rs = list()

for h in hashes:
R=0" ~~ns at tail
fo A good approach anytime one
has many “low resolution” .Ling @s from h(e)
estimates of a true value.
Rs.appe..

groupRs = [Rs[i:i+log n] for i in range(@, len(Rs), log n)]

estimated distinct elements = median(map(mean, groupRs))

Counting Moments

2nd moment
Streaming Solution: Alon-Matias-Szegedy Algorithm

(Exercise; Out of Scope; see in MMDS)

e (Oth moment:; count of distinct elements

e 1st moment: length of stream

e 2nd moment: sum of squares (measures uneveness related to variance)

Counting Moments

standard deviation
(variance squared for numeric data)

. Tl*\ 2 (i =3y

1

Counting Moments

standard deviation
(variance squared for numeric data)

N
S%\Z(Ii_f)? —L“\/le— %)

Counting Moments

standard deviation
(variance squared for numeric data)

-

For streaming, just need fo ctore
(1) number of elements, (2) cum of
elements, and [3) cum of equare.

g J

Counting Moments

standard deviation
(variance squared for numeric data)

5 = %\ Y (@i —7)? = \/(152) — 72 _
) 1

However, challenge: l (For streaming, just need fo ctore
Sum of sc]uares can blow up! (1) number of elemente, (2) cum of

7 ke/emeutr, and (3) cum of cquare.

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h, h,, ..., h, independent hash functions

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)
Given:
|S| keys to filter; will be mapped to |B| bits
hashes = h, hz..”ikindependenthashfuncﬁons
Algorithm:
set all B to @ #B 1is a bit vector

for each i1 in hashes, for each s in S:
set B[h.(s)] = 1 #all bits resulting from

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)

Given:
|S| keys to filter; will be mapped to |B| bits
hashes==iy,h?..”fuindependenthashfuncﬁons
Algorithm:
set all B to @ #B 1is a bit vector
for each i1 in hashes, for each s in S:
set B[h.(s)] = 1 #all bits resulting from
. #usually embedded in other code
while key x arrives next in stream #filter:
if B[h,(x)] == 1 for all i in hashes:
#do as 1f x 1s 1n S
else: #do as if x not in S

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h, h,, ..., h, independent hash functions

Algorithm:
set all B to © #B is a bit vector
for each i in hashes, for each s in S: Setup filter

set B[h.(s)] = 1 #all bits resulting from
. #usually embedded in other code
while key x arrives next in stream #filter: h
if B[h,(x)] == 1 for all i in hashes:
#do as 1f x 1s 1n S
else: #do as if x not in S

~ Apply Filter

1 7 What is th bability of a fal
Filtering Data s R

: What fraction of |[B| are 1s?
Filtering: Select elements with property x O | B]

Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)
Given:
|S| keys to filter; will be mapped to |B| bits
hashes==iy,h?..”fuindependenthashfuncﬁons
Algorithm:
set all B to ©
for each i1 in hashes, for each s in S:
set B[h.(s)] =1
. #usually embedded in other code
while key x arrives next in stream #filter:
if B[h,(x)] == 1 for all i in hashes:
#do as 1f x 1s 1n S
else: #do as if x not in S

(Leskovec et al., 2014)

Fi Ite ri ng Data What is the probability of a false

positive?

: What fraction of |[B| are 1s?
Filtering: Select elements with property x O | B]

Example: 40B safe email addresses for spam fijter i\ Analogy:

The Bloom Filter (approximates; allows FPs) Throw |S| * k darts at n targets.
Given: 1 dart: 1/n

|S| keys to filter; will be mapped to |B| bits d darts: (1 - 1/n)? = prob of 0

hashes = h, h, ..., h, independent hash functions = e are 0s

Algorithm:
set all B to ©
for each i1 in hashes, for each s in S:
set B[h.(s)] =1
. #usually embedded in other code
while key x arrives next in stream #filter:
if B[h,(x)] == 1 for all i in hashes:
#do as 1f x 1s 1n S
else: #do as if x not in S

(Leskovec et al., 2014)

Fi Ite ri ng Data What is the probability of a false

positive?

: What fraction of |[B| are 1s?
Filtering: Select elements with property x O | B]

Example: 40B safe email addresses for spam fijter i\ Analogy:

The Bloom Filter (approximates; allows FPs) Throw |S| * k darts at n targets.
Given: 1 dart: 1/n
|S| keys to filter; will be mapped to |B| bits d darts: (1 - 1/n)? = prob of 0
hashes = h, h, ..., h, independent hash functions = e are 0s
Algorithm: P
set all B to © =€
for large n

for each i1 in hashes, for each s in S:
set B[h.(s)] =1
. #usually embedded in other code
while key x arrives next in stream #filter:
if B[h,(x)] == 1 for all i in hashes:
#do as 1f x 1s 1n S

else: #do as if x not in S
(Leskovec et al., 2014)

Fi Ite ri ng Data What is the probability of a false

positive?

: What fraction of |[B| are 1s?
Filtering: Select elements with property x O | B]

Example: 40B safe email addresses for spam fijter i\ Analogy:

The Bloom Filter (approximates; allows FPs) Throw |S| * k darts at n targets.
Given: 1 dart: 1/n

|S| keys to filter; will be mapped to |B| bits d darts: (1 - 1/n)? = prob of 0

hashes = h, h, ..., h, independent hash functions = e are 0s
Algorithm:

set all B to @ thus, (1 - e") are 1s

for each i1 in hashes, for each s in S:
set B[h,(s)] =1 probability all k being 17?
.. #usually embedded in other code
while key x arrives next in stream #filter:
if B[h,(x)] == 1 for all i in hashes:
#do as 1f x 1s 1n S

else: #do as if x not in S
(Leskovec et al., 2014)

Fi Ite ri ng Data What is the probability of a false

positive?

: What fraction of |[B| are 1s?
Filtering: Select elements with property x O | B]

Example: 40B safe email addresses for spam fijter i\ Analogy:

The Bloom Filter (approximates; allows FPs) Throw |S| * k darts at n targets.
Given: 1 dart: 1/n

|S| keys to filter; will be mapped to |B| bits d darts: (1 - 1/n)? = prob of 0

hashes = h, h, ..., h, independent hash functions = e are 0s
Algorithm:

set all B to @ thus, (1 - e") are 1s
for each i1 in hashes, for each s in S:
set B[h.(s)] = 1 probability all k being 17

t -(ISI*k)/n Yk

. #usually embedded in other code (1 - ¢Sl)n)
while key x arrives next in stream #filter: Nsies G caad & £ S

if B[h;(x)] == 1 for all 1 in hashes: continues as long as |B| has room
#do as if x is in S (e.g. adding verified email addresses)

else: #do as if x not in S
(Leskovec et al., 2014)

Streaming Topics

® General Stream Processing Model
e Sampling
O approx. random
o hierarchical approx. random
e Counting Elements
o distinct elements
O mean, standard deviation
® Filtering data according to a criteria
o bloom filter setup + application
o calculating false positives

